RADIANT AND MOLECULAR TRANSFER IN A PLANE
SYSTEM WITH SHADOW

S. R. Galimov ' UDC 536.3

An algorithm is proposed for the numerical solution of the integral equation for the transfer

of a radiant or molecular flux in a two~-dimensional channel of arbitrary configuration, Results
of calculations of molecular transfer by the proposed method and the Monte Carlo method are
presented.

The steady-state problem of transfer of a radiant or molecular flux (these problems are equivalent here)
in a two-dimensional (plane) channel of arbitrary configuration is considered, and an algorithm is proposed
for the solution of the integral transfer equation for the effective flux density. The distinguishing feature of
this algorithm is that it enables the region of visibility (the portion of the channel surface which is visible from
an arbitrary point M lying on it) to be determined for a channel of complex geometry. Existing algorithms
(see, for example, [1, 2]) require for their use the preliminary assignment by some means of the region of
visibility, which is inconvenient and time-consuming. The proposed algorithm can be used to solve optimiza-
tion problems, for example, the problem formulated in [3], The physical properties of the surface may be
arbitrary functions of position.

The transfer of a radiant (molecular) flux subject to diffuse reflection and transmission in a closed sys-
tem formed by a contour L (Fig. 1) is described by a linear integral equation of the second kind for an effective
radiant (molecular) flux density z (M),

2(M) — v (M) |2 @0) K (4, Nyl = F0), )

where the points M and N lie on the contour L; A (M) and f(M) are, respectively, the reflection coefficient and

the flux density of the characteristic radiation (gas evolution) at the surface (and are given, arbitrary functions
of the point M); K(M, N) is a Fredholm kernel depending on the law of interaction of the particles with the sur-
face and satisfies the condition{{ K*(M, N)dIpdi N< «; dl v and dIN are elementary areas at the points M and

N, respectively. The kernel K(M, N) differs from zero only for pairs of points M and N lying on a single
straight line that does not intersect the contour between these points, i.e., only when elements of the contour L
do not cast a shadow upon one another., The main difficulty in solving Eq. (1) is to determine the region of
visibility, inside which K(M, N) = 0.

One of the simplest and most convenient methods of solving Eq. (1) is the zone method, in which the arbi-
trary functions z(M), (M), and A(M) are approximated by step functions z*(m), f*(m), and A*(m), where m is the
zone number, By the usual means (see, for example, 4, 5]), we write a system of linear algebraic equations
of order u

n
24 (m) —y* (m) 2,2 (n) @ (m, n) = f* (m),

n=1

m=12 ..., u (2)

y

where i is the number of zones;

Physicotechnical Institute of Low Temperatures, Academy of Sciences of the Ukrainian SSR, Khar'kov.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 29, No. 6, pp. 1036-1040, December, 1975, Original
article submitted September 24, 1974,

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

1623



Fig. 1. Cryopump cell No, 1: 1) inlet; 2, 4)
walls; 3) cryosurface,

o (m, 1) = llf j K (M, N)dindly ®)
" }‘ml‘n
is the mean angular coefficient; Im is the contour length in the m~th zone; Ly, Ly are the portions of the
contour L belonging to the m-th and n~th zones, respectively. In order to solve the system in Eq. (2), it is
necessary to calculate the matrix of coefficients ¢(m, n), which involves finding the region of visibility. Solv-
ing the system of linear algebraic equations in Eq. (2) gives an approximate solution of Eq. (1). The accuracy
of the solution rises with decrease in the dimensions of the largest zone,

The algorithm of the proposed method is as follows.

1. Divide the contour L into y zones with coordinates xpy,, yp, (m =1, 2, ..., p) at the vertices. Within
the limits of each zone, approximate the contour L by the straight line y =ay, x + by, where am = 'm =~ Ym-1)/
Xm — Xm-1) 20dby =¥ * amXm, .., construct the Loman contour L+, For the sake of being definite, number
the zones counterclockwise,

2. Find the numbers of the zone boundaries (the furthest is simply the boundary) gm, and gpy, with which
the m~th straight line y ='a,, x + by, intersects. If there are several such points of intersection [for example,
points Ay, A,, and A; for the (m — 1)-th zone in Fig, 1], choose the one closest to the m~th zone [A; for the
{m — 1)-th zone in Fig, 1], The boundaries are determined in such a way that gmy =1 but g,y = i, where i is the
number of a zone visible from the m-th zone. Store these boundary-point coordinates umj, Uy, (for example,
the points G and H for the m-th zone in Fig, 1), '

3. Find the vertex of the zone of contour L* that casts a shadow on the m-th zone (vertex D in Fig. 1)
by comparing the sine of the angle of slope wg of the straight line passing through the center of the m-th zone
and the vertices with numbers s—1,s,8+1 (s=1,2, ..., . If

(sih o, ; —sine,)(sine, ; —sinog) >0, @)

then the s-th vertex casts a shadow on the m-th zone,

4, Determine the point at which the straight line passing through the center of the m~th zone and the s-th
vertex (point B in Fig. 1) and store it. The zone containing this point and the s-th zone are the boundaries
Zmsk and gmyk of the region casting a shadow on the s-th vertex. The boundaries are determined in such a
way that gpsc = i but gmyk= i, where i is the number of a visible zone; k is the number of the shadowed re-
gion (k=1, 2, ..., %M.

5. Comparing the numbers of the zones with boundaries gy,1> 8m2» 8msks 8muak» investigate whether they
lie in the visible region. The algorithm allows » shadowed regions to be taken into account,

6. Calculate the matrix of coefficients for Eq. (2). If the law governing the interaction of the particles
with the surface is cosinusoidal, the mean angular coefficient is ’

9 (m, 1) = Tl (e -+ Lrc) — (lzc + Lro)] )

m

where l;l is the length of the m~th zone; I ED, ! pcs L gC» ! FD are the lengths of the segménts joining the points
E and D, F and C, E and C, and F and D, respectively (Fig. 1). If m or n coincides with one of the boundaries,
then to calculate ¢{m, n) use the points Upyy, Uz, Umsk Obtained earlier and also Eq. (5).
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Fig. 2, Cryopump cell No, 2: 1) inlet; 2, 4) walls; 3) cryosurface,
Fig. 3. Cryopump cell No, 3: 1) inlet; 2, 4) walls; 3) cryosurface,

7. Solve the system of linear algebraic equations in Eq. (2).

Using this algorithm, a program was written for the solution of the integral equation for the transfer of
radiant or molecular fluxes in the considered class of systems with a cosinusoidal law governing the reflection
" and transmission of particles, The program was written in the language Algol-60 for a TA-IM translator. It
provides for the division of large zones into smaller subzones, which allows Eq. (1) to be solved with sufficient
accuracy for contours with large straight-line sections. Ifan M-222 MOZU computer is used, the maximum
number of zones may reach 30, For p = 20 zones, the time of solution is ~ 10 sec (disregarding the time spent
in translating the program).

As anexample of the use of this program, the molecular-capture coefficient o= Q; /Q, of one cell of a
cryocondensation pump was calculated (Figs. 1~3). Here, Q, is the resultant flux at the cryosurface 3 with
condensation coefficient 1 — y3=1; Q is the diffuse flux entering the cell through the plane inlet 1 with conden-
sation coefficient1 —y; = 1. On surfaces 2 and 4, let y, = v, =1, The capture coefficient was calculated using
the Monte Carlo method (c4) [6] and by the method proposed above (%) for the cells shown in Figs. 1-3. The
results are shown in Table 1. Here 6 is the relative error of the Monte Carlo method for a confidence level of
0.95; u is the number of zones into which the contour L is divided (the division is indicated in Figs, 1-3 by dots;
the initial contour L is shown as a continuous line, and the approximating contour L* as a dashed line). These
results indicate that, for the contour formed by Loman lines (Fig. 2), the given method gives practically the
same results as the Monte Carlo method. For curvilinear contours the result depends on the accuracy of ap-
proximation of the contour L, The less contour L* deviates from contour L, the more accurate the result,

In comparison with the Monte Carlo method, the proposed method has the advantage that it requires consider-
ably less machine time (by a factor of approximately 60 for x =25, 6 = 0,05, and o =~ 0.25), which allows it to

 be used for the solution of optimization problems. In addltlon, the initial information is introduced in simpler
form and requires less time for its preparation,

Thus for the solution of the problem of the transfer of a molecular or radiant flux in a two-dimensional

TABLE 1. Molecular-Capture Coefficients of Cryopump Cells

Fig. @, K ‘ s l n j A=ia‘;g—:|
1 0,197 0,067 0,218 20 0,107

2 0,216 0,060 0 212 21 0,0185
3 0,165 0,050 0,180 27 0,091
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cavity or channel, the given method is preferable to the Monte Carlo method,

NOTATION

L, initial contour; L% contour approximating contour L; z(M), f(M), v(M), arbitrary functions of the point
M; z*(m), £*(m), y* (m), step functions approximating the functions z (M), f(M), y(M); u, number of zones; ¢(m, n),
mean angular coefficient; I, contour length; o, molecular-capture coefficient; 5, relative error,
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HEAT TRANSFER OF THERMISTORS IN A NONUNIFORM
ELECTRIC FIELD

S. B, Minkin, V., E, Ulashchik, UDC 536.244
B. I. Fedorov, and A. G, Shashkov '

The results of an investigation of the action of de.and ac electric fields on the heat transfer
of thermistors are described,

In recent years both in the Soviet Union and abroad increased attention has been given to finding new
methods of improving heat transfer based on the use of electric fields, The basic principle of this method is
the fact that under the action of intense electric forces in liquids and gases additional disturbances arise which
under certain conditions can be localized in a narrow region of the boundary layer which has the highest ther~
mal resistance and is therefore essentially a controllable heat transfer, The electroconvection disturbances
that arise lead to a considerable increase in heat transfer.

However, despite the promising possibilities of the new method it has not been investigated to any great
extent either theoretically or in practice. The theoretical assumptions and experimental results of different
investigators are often questionable and even contradictory. This relates, first of all, to the nature of the
action on the heat transfer of dc, ac, and mixed electric fields, and also to the quantitative estimates of the
increase in heat transfer as a function of the field strength, the temperature difference, the configuration, the
diameter of the heat-transfer and high-voltage electrodes, their mutual position, the temperature of the sur-
rounding medium, etc, [6]. The methods for the experimental investigation of the effect are also far from ideal.
Thus, in all the publications known to us [1-7] the heat transfer of the heated conductor has been investigated.
The high-voltage was applied either to a coaxially situated conducting cylinder or to a plate placed parallel to
the conductor, Hence, in all these cases the heat transfer of a conductor in a nonuniform electric field was
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